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SECTION |

INTRODUCTION |

Free flight aerodynamic characteristics have been determined by several means of data
acquisition. These include the ballistic spark range, wind tunnel, and position radar coupled with 3
a Sonde sun sensor (measures angular orientation relative to the sun, Reference 1). The ballistic 3 i
sparh range has proven to be an accurate means of obtaining aerodynamic characteristics, 5 -
Reference 2, 3, 4. The dynamic data consists of spark photographs of the model in flight at a !
specified number of surveyed stations. Each station photographs the model in both the vertical
i and horizontal planes, thereby allowing for measurement of the six-degree-of-freedom orientation

of the model. Dynamic data experimental resolution obtainable from a ballistic spark range is of
the order of:

2 x 1077 seconds in time
0.1 degree in pitch and sideslip angle
1.0 degree in roll angle

0.001 foot in X, y, z coordinates g

CORRELATION OF FREE FLIGHT DATA - BACKGROUND

P Ee— £=2

—

The problems associated with direct correlation of the model (equations of motion) to the
test data are threefold, viz. the basic differential equations of motion are nonlinear, the
aerodynamic effects are also nonlinear, and the test data are acquired in a coordinate system i
which is generally not consistent with the model derivation. !

The most prevalent method of analyzing ballistic spark range data is based on the linear
approximation known as linear theory. Stated briefly, the method uses a linearized model;i.e., a
closed form approximate solution to an exact set of differential equations of motion. A least
squares fitting technique is used to determine the aerodynamic parameters used in the linearized
model. Murphy (Reference 2, 3, 4), MacAllister (Reference 5 and 6), and others at (BRL)
: Ballistic Research Laboratory as well as Nicolaides (Reference 6-9) and Eikenberry (Reference
10) have developed this method to the extent that certain types of nonlinearities can also be
analyzed. However, unless many cycles of data are present and/or multiple experiments
conducted, there is only one nonlincar acrodynamic parameter which can be consistenth
identified, i.e., the static overturning moment.
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In analyzing free flight data, in 1969 Chapman and Kirk of NASA Ames, California
(Reference 11) documented a technique which allows the nonlinear differential equations of
motion to be used directly in the data correlation process. The technique climinates the
requirement for closed form approximations to the equations of motion. It is essentially a
differential corrections process of forming a system of partial derivatives based on a truncated
Taylor’s series approximation. The equations of motion and partial derivatives are numerically
integrated and solved for the acrodynamic coefficients, based on a least squares formnlation, to
hest fit the data. Independent contributions to this numerical extraction technique were made by
Knadler (Reference i2) and Goodman (Reference 13), although the method is usually referred to
as the Chapman-Kirk technique. Since this technique includes a very generalized model concept,
it is necessary for successful application to have morce insight as to which acrodynamic
characteristics are pertinent in a given case. The previous limitations caused by nonlinearities in
the equations of motion and acrodynamics can be circumvented using this technique.

In late 1969 Whyte and Beliveau (Reference 14-16) documented implemeniation of the
Chapman-Kirk technique for the reduction of experimental ballistic spark range data. Nonlincar
aerodynamics were determined from a single data set. Since 1970, the contractor has been very
successful in data analysis of a varicty of configurations from spark range data, radar data, and
Sonde data utilizing this technique (Reference 17-22). A measurc of success might be the degrees
to which the motion data can be reproduced given the determined acrodynamics and model. The
criteria in free flight acrodynamic data analysis should be that the reduction is not successful
until the motion data can be reproduced to a probable ecrror equivalent to that of the
experimental data.

Until recently, data reduction investigations on free flight acrodynamic data have involved
primarily symmetric configurations with the exception of wind tunnel investigations. Interest has
been shown in using the ballistic spark range for testing nonsymmetric shapes in free flight (e.g.,
elliptic cross section re<ntry vehicles). Development of a data analysis model and correlation
technique capable of handling mass and configuration asymmetries was initiated in January 1974
by the contractor under government contract. Elimination of the assumption of symmetry was
complicated by an additional coordinate system transformation and the complexity of the
acrodynamics.

SCOPE OF REPORT

The scope can be summarized as follows:

° Model Derivation
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e Data Correlation Technique
e  Test Case Correlation

The derivation of the model (equations of motion) is done in a coordinate system rigidly
attached to the body and rolling with it. With the assumption of symmetry, the model could be
defined in a non-rolling coordinate system. Since the dynamic data are acquired in an earth-fixed
system, accurate transtormations are required to correlate the data with computed values which
makes the degrees of freedom highly coupled. Six degrees of freedom are utilized in defining the
acceleration and angular momentum equations. The derivation assumes a nonsymmetric
configuration, The forces and moments acting on this configuration are defined using
aerodynamic coefficients to model the flow phenomenon. Detailed descriptions of the fluid
dynamic effects are not discussed. Nonlinearities in the aerodynamics are modeled as polynomial
functions of the components of the angle of attack. A thorough understanding of the mode!
derivation is imperative to the overall data analysis technique due to the complexity of the
coordinate system transformations and modeling of the flow phenomena. Data analysis using a
generalized model containing a large number of acrodynamic coetficients, becomes very abstract
without this understanding. Physical significance must be interpreted from the determined
aerodynamic coefficients and can only be achieved from the model derivation.

Numerical integration is utilized in correlating the dynamic data to the model. Both the
equations of motion and parametric equations are numerically integrated using a fourth order
Runge-Kutta Method. As with the case of data analysis of symmetric configurations, the
reduction is done in two phases using least-squares theory. The translational motion is reduced
first to determine the force coefficients and velocity components required in the reduction of the
angular motion. Phase I embodies the angular motion reduction to determine the aerodynamic
moment coefficients. Decoupling of the translation and angular motion is required in
implementing the Chapman-Kirk technique. Differential corrections using least-squares theory is
not amenable to simultaneous correlation of the two motions. This two-phase data analysis
concept has been very successful in reducing a large number of data sets on symmetric
configurations, Retference 14-22.

Preliminary verification of the model derivation and data correlation technique was done
using an ideal test case. Free flight spark range data on the motion of two elliptic bodies with
non-qual transverse inertias were then analyzed. The aerodynamic forces and moments on the

elliptic bodies were determined with the resulting probable error of fit approximately equivalent
to that of the measured data.




SECTION 1

MODEL DERIVATION

COORDINATE SYSTEM DEFINITIONS

The cquations of motion will be derived in a body fixed coordinate system where the x-axis
is aligned with the longitudinal axis of the missile, and the coordinate system is free to rotate
about that axis at some spin rate, . In other words, the coordinate system is rigidly attached to
the projectile. The inertial frame of reference is the earth. It is assumed that the earth is fixed in
space, nonrotating, and flat.

As an additional frame of reference, a fixed plane coordinate system will be defined. This
system is similar to the body-fixed coordinate system with the exception that it does not rotate
about the missile x-axis, and the y-axis is constrained to be parallel to the XY-plane of the earth
fixed coordinate system.

ig, Jo» ke — Earth Coordinate System
g jn1f"kn1f — Fixed Plane Coordinate System
i J Km — Body-Fixed Coordinate System

To relate the orientation of one coordinate system relative to another, the use of Euler
angles (GFP, YEp) will be employed as illustrated in Figure 1, which relates the orientation of
fixed plane system to the earth coordinate system. The angles are obtained by rotating a
coordinate system, initially coincident with the earth system, about the Z-axis through an angle
Ypp and then about the Y'-axis through the angle 0 pp- This results in a y-axis which lies in the
XY-plane which is part of the definition of the fixed plane coordinate system. To extend this to
the body-fixed system, a rotution about the x-axis is required as illustrated in Figure 2. The
definition of the missile velocity vector components is also indicated.

EQUATIONS OF MOTION

The acrodynamic forces and moments are to be defined in the body-fixed coordinate
system. Therefore, the equations of motion must be derived based on the acceleration and
angular momentum defined in the body-fixed system relative to the inertial frame of reference.
Beginning with Newton’s second Law, the acceleration and angular momentum will be defined in
the body-fixed coordinate system, where the center of gravity of the projectile need not be on
the x-axis.
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X. Y, Z - Earth-Fixed Coordinates
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X, Y. 7z — Fixed Plane Coordinate System

Figure 1. Fixed Plane Coordinate System
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X, ¥, z — Fixed Plane Coordinate System

X',y z'— Body-Fixed Coordinate System

Figure 2. Body-Fixed Coordinate System




where:
V=uggim* VRBIm * wRBKm (3)
@ = Pl + dipy + Ry (4)
T=[llwy (5)

[1] is the mass moment of inertia tensor.

The moment of inertia tensor will be defined such that the body fixed x'y'- plane is a plane
of mirror symmetry (i.e. l,, = 1yz =0).

Equations (1) through (5) will be stated in terms of the body-fixed components. The
following equations of motion are obtained after the vector multiplications and cross products.

Iy Ly O |
0 0
FX . m(l.lRB + (]WRB = l'VRB) (73)
Fy=m(gp * rugg ~ PWRp) (7b)
F,=m(Wgp +pvRp — QURB) (7¢)
Lp=lxp—lxyq+lzqr+lxyrp—lyqr (8a)
Lq=lyq~—lxyp+lxpr-—lxyqr<-Izpr (8b)

o 2
Lo, T Ly p? +1ypa — Iy pa+ 1y, q° (8¢)
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The equations of motion are desired in the form of linear and angular acceleration (body
fixed) as a function of the aerodynamic forces and moments. Simultancous solution of Equations
(8a) and (8b) and rearrangement of the remaining Equations (7) and (8) equations will result in
the desired form.

L.IRB =rvgg — awrg t Fy/m (9a)

;'RB =pwgpp ~ fupp * Fy/m (9b)

;VRB =qugg — PR * F ,/m (9¢)

l.)=|pr+1,(qu-.(|x+|y 1) Ly Pre (2 +10 Ay — L)) ar o
(yly ~ yy?)

a=1xiq+lxpr+(lx+ly 1) Ty ar+ (1, (1, ~ 1) 1 P pr o)
(yly — Lyy?)

L Lty @7 a1y (10c)

r= lZ

Equations (9) and (10) represent the six-degrec-of-freedom differential equations of motion
derived in the body-fixed coordinate system. Once the definition of the forces and moments is
made, the solution to these equations will define the six-degree-of-freedom free flight motion of a
nonsymmetric missile in body-fixed coordinates. The equations of motion have been derived in
the body-fixed coordinate system for the purpose of difining the forces and moments. Their
solution results in the translational and angular motion of the missile relative to the body-fixed
coordinate system. An additional set of transformation differential equations will be used for
defining the motion relative to the earth. The data acquired from a ballistic spark range is in
terms of this motion. Therefore, the transformation equations are necessary for correlation of the
equations of motion to the data. These transformation equations are expressed in terms of the
body-fixed velocity components (URp> VRB* P> @ and r), the fixed plane Euler angles (Opp.
Ypp) and the angle of rotation about the missile axis (¢).

VX =URR COSGFI) COS\[/FI) + VRB (SlNOFPS|N¢COS¢IFI) COS(bSINl]/FI))

+ wRrp (SINO :pCOS¢COSY :p + SINGSINY 1=p) .

Vy = URgCOSOEpSINYEp + VR (SINO :pSINGSINY :p + COSYEpCOSe) -
+ wrp (SINORpCOSESINGEp — COSYppSING)

V, = ugpSINp + VR gSINGCOSO :p + WR gCOSHCOSOpp T

eI

AR (I

i
=
*
£
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5=p+ TANO :p [ SINg +1COSy ] (11d)

0 =qCOSp rSING (11e)

7 =1 q SINg + 1 COS |/ COSCy.p (1)

AERCDYNAMIC FORCES AND MOMENTS

The forces and moments resulting from fluid flow phenom-~na on. NSy 1

t form as is done in classical acrodynamics, Re- (he
d on Reference 23. Depending on the caperies

nts could be nonlinear

be defined in coefficien
definitions of the acrody namics are base
and complexity of the missile configuration, these forces and mome
functions of the total angle of attack (@) or components of the angle of attac'. (a, B). The angles
@ a, and fare defined in Figure 3. Ina ballistic range the Mach number change during the flight is
r effects will therefore be neglected, with the exception of the axial

relatively smail. “ach numbe
application of the final equations of motion is to analyze free

force, in this derivation since the
llistic range. The nonlinearities with angle of attack will be modeled as

flight motion in a ba
attack or its components. Experience has

polynomial functions of the sine of the total angle of
shown this method of modeling to be adequate (Reference 14-22).

BASIC FORCES AND MOMENTS

The primary aerodynamic forces and moments actingon a body in free flight are illustrated

in Figure 3. The forcesarca result of drag, lift, and pressure distribution around a rotating body,
s are a result of skin friction and the fact that the forces act at the center of

while the moment
avity. A more detailed description of these

pressure which is not coincident with the center of gr

primary forces and moments is as follows:
C, - Axial Force
- Acts along the body axis opposite to the upp velocity vector
c, - Nomal Force (a)
- Acts in the a-pitch plane perpendicular to the body axis
C, - Normal Force (8)
- Acts in the g-sideslip plane perpendicular to the body axis
Cz,p - Magnus Force (8)

- Acts perpendicular to the g-sideslip plane
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Figure 3. Body-Fixed Coordinate System with Basic Force and Moment Definition
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Magnus Force (a)
Acts perpendicular to the a-pitch plane
Roll moment

Acts about x'-axis
Pitching Moment (a)
Acts about y'-axis
Pitching Moment ()
Acts about — z'-axis
Magnus Moment (3)
Acts about y'-axis
Magnus Moment (a)

Acts about z'-axis

The magnus and spin forces and moments are dependent on the nondimensional spin parameter,

pd/2v, since they are only associated with flow phenomena about a spinning body. The forces

and moments will be modeled as coefficient derivative functions of the sine of the components of
the total angle of attack,d@.

“RB

SINa = v (12a)

VRB
(12b)

Therefore:

b} )
WRB VRB ~
C,=TA(C +CX<12(T) +Cx32(T) + Cym (M — MREF) )

3
WRB YRB




Cp=qAd (CQp (-;—\-/-)) (130

WRB WRB

Cin = QA (Cpq ( Vv )+ Chnas ¢ v ) ) (13g)

VRB VRB =
Cy= qAd( Cnﬁ (——V—-) + Cnﬁ3 (7) ) (13h)
pd VRB
Cryp =T Ad CCrnpg (W)( v ) (13i)
pd WRB
Cnp=IiAd((hpa(?57)(——V—)) (13j)

DAMPING MOMENT

The yaw damping moment being considered is defined as acting perpendicular to the body
axis but independent of the yaw (angle of attack) plane orientation.
angular velocity components, q and r. Modeling of the damping mome
the aerodynamic coefficients Cmq and C
4,

It is dependent on the
nt is accomplished using
nr The sense of these components is depicted in Figure

5
qd WRB ~

Cmg =0 Ad (E ) (Cing * Cing2 ¢ v ) ) (14a)

rd VRB
Cnr =q Ad (—2'\7) G t Chra (—V-) ) (14h)

It should be noted that a more exact definition of the damping moment would be to

consider it as being dependent on the cross-angular velocity components g’ and ' which are

coincident with, and normal to, the angle of attack plane, respectively (Reference 23). These
components are shown in Figure 4. The more exact de

finition would introduce cross-damping
terms into the equations of motion.
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BODY-FIXED ASYMMETRIES

Body-fixed aerodynamic forces and moments are due to misalignment, cant, or asymmetry
of body and/or lifting surfaces. Figure 4 depicts a center of gravity which is completely
nonplanar relative to the primary body axes (x'-y’-z'). These forces and moments are commonly
referred to as trims. The existence of trims would cause the free flight angular motion of a body
to oscillate about an axis which is not coincident with the initial body x'-axis. The body fixed
forces and moments will be defined by the acrodynamic coefficients Cyo' Cior Gogo d Gy @8
illustrated in Figure 4. The forces Cyo and C, act at the center of pressure causing the moments
Cho and Cmo about the center of gravity, respectively. Trims along and about the body X'-axis
are absorbed in the axial force and roll moment coefficients as defined in Equations (13a and f).

AERODYNAMIC EFFECT DUE TO CROSS FLOW ORIENTATION

These effects are due to the orientation of the aerodynamic surfaces with respect to the
cross flow. The orientation of these surfaces will be defined by the acrodynamic roll angle, ¢',
which is the clockwise rotation by the aerodynamic surfaces with respect to the cross flow as
illustrated in Figure 5. The cross flow velocity vector is the resultant velocity perpendicular to
the primary body axis, x'.

VRB
¢'=TAN I —] ¢

WRB (15)
The phase angle, ¢, due to the initial orientation of the plane of symmetry relative to the
body-fixed coordinate system axes should typically be zero. The most significant induced
aerodynamic effects resulting from missile orientation relative to cross flow are generally the
induced rolling moment, the induced side force, and the induced side moment (Reference 23).
Since the cross flow will have some effect on normal force and pitching moment, they will be
considered also. These forces and moments are a function of the total angle of attack in addition
to the aerodynamic roll angle.

il

Induced side force acts (16a)

C,. SIN2&SIN(n¢'
yoa a (n¢") perpendicular to yaw plane

Induced side moment (16b)

Cnga SIN 2@ SIN (ng')

CN¢aSIN 2 ZSIN (ng') = Induced normal force acts in (16¢)
yaw plane
Cm¢a SIN 2 @ SIN ( ng') = Induced pitching moment (rod)
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PLANE OF SYMMETRY

Figure 5. Aerodynamic Surfaces Relative to Cross Flow




. 2= '
CpaSIN @ SIN (ng") = Induced rolling moment (16¢)

n = number of axially symmetric fins or surfaces
GRAVITATIONAL FORCE

The force of gravity will be detined in vector notation as follows:

an

Replacing the unit vector k. by its representation in the body fixed coordinate system, the
gravity force will be resolved into components which are consistent with the definition of the
acrodynamic forces.

—

—mg_l:c = mgSING Fpi

—

m- mgCOSO FPS|N¢jm > mgCOSO |:pCOS¢km (]8)
It is assumed that the carth is flat, and the earth’s rotation may be neglected.

SUMMARY OF FORCES AND MOMENTS

Combining the forces and moments which have been defined in Equations (12) through
(18), the terms Fy Fy, F,, Lp, Lq, L, will be defined for substitution into Equations (9) and
(10).

2 2

- YRR VRB

Fy=qA[ Cyo t Coa? (——V—) + Cxﬁ?. Z-—V—) +Cym (M~ MREF) | + mgSING ep 19)

RB RB pd wpp
Fy =GA [ Cyo + Cyg(mg) + Cyp3 () +Cypq (50 )
VRB WRB 20
~CNgaSIN?@ SIN(G'N— ) + CyggSIN'G SIN(ng')——) |
- mgCOSO|:pSING
WRB wp hd - VRg
Py =TALCpo ¥ Coq () # Cpgy () + Cppptsl—) -
v _VRB . ~'RB
~CNgaSIN @ SIN(N—=) €y SIN? @ SIN(G'N——) |

mg(‘OSO I p(‘OS¢

16

|

“
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i pa , |
| Lp = GAd [ Cgplgy) + Cogy SIN? @ SINGg") (22) 1
w w 3 d YRB : 1
RB RB q
i Lq = aAd [ Cpo + Chyg ¢ v )+ Cing3 ( v ) *( oV M Cing * Cing2 ¢ Y; ) ) (23) ¢
E pd VRB WRB i :
+ Crypg (7 (7 + 6aSIN? @ SIN(ng')(——) |
1 . VRB
| + CpggSIN® @ SIN(——) |
3 2
VRB VRB i 'RB ]
LI‘ =qAd | Cno + Cnﬁ (——\-/—) + CnB3 ( Y ) *( 2V )(Cm. + Cm.2 (T) ) 24) k|
i
pd WRB i VRB 1.'
*Chpa Gy () CmgaSINT @ SIN(@)——)
‘ |
5 YRB 9
+ CrgpaSIN“ @ SIN(ng')¢ v ) ] 3
- .
' !
E | 4
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SECTION 1H

DATA CORRELATION TECHNIQUE

DIFFERENTIAL CORRECTIONS (SENSITIVITY EQUATIONS)

The essential steps of the analysis we briefly summarized. The exact equations of motion

are derived containing all necessary aerodynamic coefficients. By integration of the equations of

motion the theoretical trajectory is obtained. The actual trajectory is known {rom the ballistic
range test data. The gist of the method is to adjust the acrodynamic coefficients contained in the
equations of motion in such a way that the generated trajectory matches the actual. The
mathematical treatment is a sensitivity analysis. The sensitivity equations or parametric
differential equations are ordinary differential equations whose dependent variables are the
partial derivatives of the state variables with respect to the parameters. The sensitivity equations
are integrated in parallel with the equations of motion to yield sensitivity coefficients (partial
derivatives), which reflect the sensitivity of the computed solution with respect to cach
aerodynamic coefficient or system parameter (e.g., initial condition).

The use of a truncated Taylo.’s series expansion brings about a method of quasilincarization
which uses these sensitivity coefficients to linearize the change in the solution of the nonlinear
equations of motion due to a change in the acrodynamic coefficients or system parameters. As an
illustration we will consider the following functional representation of the solution to a system of
dynamic equations. '

Let:

e
0% = f(€°, t) = computed solution to the 6 equation of motion based on the initial estimates
to the system parameters, ¢°.

'c“=[c]’ Cyv €30 ov e, cp|T= the system parameter vector containing parameters to be
determined.

(1]
‘p(c) = (0, t) = computed solution to the Y equation of motion based on initial estimates.

e
¢8= h(Z°, t) = computed solution to the ¢ equation of motion based on initial estimates.
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OE(t). n,l/E(l), ¢li(t) = ¢experimental data at discrete points in time.

Employing a Tuylor’s series expansion about what will be detined as the nominal solution, and

neglecting sccond and higher order terms results in the following:

p 00 .0
0.=1(CO+AC, D=1(C,D+Z (—=) A (25)
i=1 9Cj
- . p 00
Yo =2 (CO+AC, =g (CO 1) +_El( s ) AC (26)
1= |
- = p %0
¢ =M (CO+AC, 1) =h (CO, 1)+ X ¢ ) AC; (27)
i=] 9Cj

Where P is the number of system parameters to be determined. Equations (25) through (27)
represent the nominal solution which provides the optimum correlation to the experimental data.
Data acquisition errors or measurement noise is defined in Equations (28).

RO = OE (t) ()c (28a)
Rw = \IIE (t) ¢C (28b)
R¢=¢E(t)- X (28¢)

The assumption made is that in the absence of measurement noise, the dynamic equations of

motion exactly define the experimental data based on the system parameters, <. Inclusion of the
measure ment noise in Equations (25 through 27) gives the following:

p d0.0

Rg=0p — fCO+AC, =0  (CO1t) = ) AC; (292)
p oY.o

Ry =V &(C+AC. 0=y 2(C% 1) T(=—=—) A (29b)
b 0990

Ry=op - +BC.0=¢p h(C°0 ¥(——) AC; (29¢)

i=1 aCl




Eg=0p - 1(CO1) (302)

Ey=yp 200 (30b)

Eg=gp 0 (CO,0) (30¢)

Theoretically Ry, R\l” and R¢ have been defined as the measurement noise. In an iterative sense,
R is one iteration ahead of E, which is defined in Equations (30). In the limit as convergence is
achieved E should approach R being a measure of the measurement noise. Ey. E\P‘ and Eg can be

thought of as an approximation of the measurement noise based on initial estimates; ¢©.

LEAST-SQUARES THEORY

A suitable technique for matching the theoretical trajectory to the actual is least-squares
theory. Through successive iterations, the residual functions, Ry, Rllf‘ and R¢. are minimized to
the measurement accuracy of the experimental data. The residuals to be minimized are the
differences between the experimental data and the computed solution which are defined in the
previous section as the measurement noise E. Application of the theory results in the
minimization of the squares of the residuals based on variations (Kc) of the system parameters
(L-‘.). The square of the residual functions to be minimized are as follows:

N N p 060
9 = T 2 <
Rp“=3[0p — 1 (CO+AC, 1) |-=3[ Ep — T(—)AC; | (31a)
0 E 0 :
k=1 K=t~ m10G 0 Tk
N N p oY.0
2 = L 2 2
Ry =L[¥p - 2(CO+AC,t)]= = Z[Ey, — 2( )AC; ]- (31b)
v k=1 k' k=i 4 i=1 9¢; 'k
N N p 040
; RZ=Z [ - h(CO+AC, 0| 2= [ Ky (=) AG) 2 (310)
¢ k=1 2 k k=1 i=1 aCi : k

Minimization of the sum of the squares of the residuals will be achieved by taking the partial
derivative with respect to Ac and setting it equal to zero. This is indicated in Equations (32). N is

defined as the total number of data points,

s i




2
2 00 .0
oR N p 0800 ¢
20 vk A —] =0
2
aR‘p N p awco a\bCO
=3 2IE,; — I )AC; T | | =0
aACj k=1 ] oC; k aCj k
aR,2 d )
R . ¢ N p 990 $.0
f ——=Z 2[Ey-Z¢ ) ACi ] | ] =0
3 aACj k=1 i=1 aC; k aCj k
I
| ! Equations (32) may be rewritten in matrix notation as follows:
.o 300 96 ;o
ac,  Cy aC,,
Wo WO oy 0
; [ A ] = aCl -a-E-z— ....... an
a¢C0 6¢Co a¢co
i) e EE;.... TN
1 | !
i
) ’ _ 1 ACl
| ¥ : AC
1] Eg 2
g [AC]=]
i [E]={Ey :
, F .
; ¢ .
g, i
f ACp
1 L
N
% .
¥ N T N 1
¥ [A] [AJ[ACI=Z[A] [E]
k=1 k=1
1
}
4
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Equation (33) may be solved to provide corrections ([AC)) to be applied 1o the
acrodynamic coefficients and system parameters (C°), knowing the partial derivatives
([A] — sensitivity coefficients) and the approximated measurement noise ([E] —c.g.
Eg=0g - f(C0, 1)).

APPLICATION TO EQUATIONS OF MOTION
In correlating ballistic spark range data using least-squares theory, analysis of the swerve

motion (x, Y, z) is decoupled from the angular motion (0, ¥, ¢). The equations of motion (EOM)
used in the decoupled swerve analysis are as follows:

SWERVE EOM

PAV2

Vx =5 CCOSOEpCOSYpp - Ty (SINORpCOSYRpSING — SINYEpCOSe)  (34a)

C, (SINOpCOSY[pCOS + SINY:pSING)

— pd .

+ (‘yp (W)(SINOFPSIN¢COS¢/FP g SIN\[IFI)COS([))
— pd .

-~ Cpp g NSINOEpCOSPCOSYp +SINGSINY:p ) |
PAV?

Vy =) [ - (,COSORpSINYEp — C, ( SINORpSINYEpSING + COSYEpCOS ) (34b)

'C,, (SINOpSINY 1 pCOS$ - COSYpSINGS)

—_ pd

+ (‘yp ( 2'V‘_)(SIN0 FpSleFI)SINd) + COS\I/FPCOS(p)

pd

[ (S SINOEpSINY |:pCOSG — COSYp:pSING) |




PAV?

VZ=( m )l (‘XSINOIP (‘ySIN(pCOSOFP (34C)

pd
- ("7, (‘OS(I)COSOF[) + Cyp (“z‘v_) SlNd)COSO FP

_ pd
- C7~P (Z_V) COSpCOSO:p | &

Equations (34) were derived by differentiating the transformation Equations (11a), (11b), and
(11c¢), and substituting Equations (9a), (9b), and (9¢) for URB: YRB and WRB- Definition of the
aerodynamics in Equations (34) follows.

2 2
_ WRB YRB .
Cx = Cxo * Cxa2 (-"\7") +Cxp2 (T) +Cxm (M~ MREF) (352)
- VRB VRB :

3
WRB YRB

7,0+Cza( V )+Cza3( V-)

C,=C

28,
\Y

= YRB
Cop = Copp ()

Direct correlation of experimental data to the equations of motion for the determination of
the acrodynamic coefficients requires a system of partial differential equations, sometimes called
sensitivity equations. This system of equations results from taking partial derivatives with respect

to cach acrodynamic coefficient on the equations of the motion.




The system of partials required for direct correlation to the swerve or position data (x, y. 2)
is as follows:

- X =3
XX o (36)
3C,  9C, ac,
oy ey ay
(A= S °
8C,  aC, aC,
YA/ oz
90, a0, ac, |

. —These partial derivatives are obtained from numerical integration of a{/x/acj, a\'/y/acj, and
avz/acj.

For simplicity of derivation as well as computational purposes, partial derivatives will be
stated in generalized form. Derivation of the partial derivative for Equation (34a) follows.

a\./,, oV aC;
a(j aCj a(j
where:
PAV wRp kB
Al =—m | - (2CX0 + Cxaz ( v ) +.2CXﬁ2 ( v ) + CXM (3M - 2MREF)) COSOFP(‘OS\[/FI)

3
VRB VRB

_ 2(Cy0 + CYB (T) + Cyﬁ3 (T) ) (SINOFPCOS\DFPS”‘M) — SIN\[/FP(‘OSQ”
3
YRB WRB
— 2(CZO + CZG, ('_v—) + Cza3 (‘—V—) ) (SINOFI)COS\}/F[)COS(I) + SINd/FPSlN¢)
+ Cypa ('—v—)( 2—\/—) (SING FpSlNd)COSl[JFI) ' SlNJJFpCOSQ))

VRB pd
= Capg (=) (577) (SINORpCOSHCOSYp + SINGSINY ) |
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A
PAV=  WRp
CE. K|= 2m ( Y; ) (SlNoFI)COSwFl)COS¢+SINWFPSINd))
for j corresponding to €, 3
2 2 2.1/2
V=(Vx +Vy +Vl)

As indicated in the preceding partial derivative, those variables computed during analysis of the
angular motion are assumed known and therefore, are not treated as dependent variables. The
variables which are assumed known are WRB/V> YRB/V" Opps VFp: and ¢. Derivation of the
complete set of partial derivatives used for analysis of the position data is contained in Appendix
A.

Th2 equations of motion used in the angular motion analysis are as follows:

ANGULAR EOM

o)
lpr + lxqu — (I + Iy 1) Ixypr+ (Ixy~ + ]y (Iy 1)) ar

. (38a)
p -

(yly = 1)

)

. leq + lxpr + (lx + ly - IZ) lxy qr + (|x (l’/. - lx) - lxy") pr
q= 5 (38b)

(lxly- lxy")
r= (38¢)

IZ

;’RB = PWRRB  TURB it Fy/ll] g S|N¢(‘050r|) (38d)
\7VRB =qugpg -~ PvRp t F,/m g COS¢COSO:p (38¢)
o= p+T/\N0|:|) (q SINg + r COS¢) (380
0 =qCOS¢ — rSINg (38g)

. L
The ¢ equation is not included since Y pp and § are not needed for the analysis.
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Definition of the aerodynamics in Equations (38) follows.

pd
— e '
D =qAd]| Cgg t Cgp (—2\7) + CQ¢ SIN“a SIN (n¢') |

3

Ly =aAd 1 Cpo® Chg ) F Cina3 (—T) g oy * Cmq2 Gy

pd VRB ) WRB
+ Cinpg (W)( v )+Cm¢aSIN a SIN (n¢' ) v )
. VRB
+Cpgq SIN" @ SIN (n¢' ) 5 )]
YRB VRB 3 rd

Lr=ﬁAd[Cn0+Chﬁij—)+(}ﬁ3( v ) +Cnrkgvﬂ

b |
rd VRB pd WRB VRB

IS, D ,
+Cnr2(_2_{/_)( v ) + C“pa(W)(T) (m¢a5|N' a SIN(n¢' ) 5

)

Ny WRB
+ Cn¢aSlN" a SlN(n¢')(——V—-) ]

VRB VRE ° pd  WRB
Fy=aAl Cyo + CYB ( v )+ Cyﬁ_g (—V—) % (‘ypa (—2—\/—)(——\,—)

, YRB o WRB
- CNMSIN' a SIN(ng) ( T )+ Cy¢aS|N" a SIN(n¢ X v Y]
w w 3 v
RB RB pd  VRB

Fy =qA [C,u + Cpq (—v—-) +C, 03 ¢ v ) + C’/,pﬁ (—2—\,—)(—-\/—‘)

WRB 5 VRB
) Cyd)aSlN_ a SlN(n¢')(—T) ]

2= '
— CngaSIN? @ SINME) (—

(39a)

5

WRB WRB qd (]d WRB
)(——;;—) (39b)

(39¢)

(39d)

(39¢)
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{
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The system of partial differential equations required for direct correlation to the angular

motion data (0 RB: ‘/’RB’ @) is as follows:

=~

dpy Ry
ac) aC;

(B1=|2¥RB VRSB

ac, aC,
OB
ac,  ac,

MRy
aC,

IVREB
A

(40)

These partials are obtained from numerical integration of a\'/RB/acj, a‘;VRB/aCj’ a¢/acj.
Having obtained avRB/aCj and ow RB/BC-, the transformation equations are used to obtain

partials of 0 g and Y g as follows:

Yrp =~ SIN! (vpp/V)

Orp = SIN'! (Wrp/(VCOSYRR))

Using the chain differentiation rule results in the following:

aWRB

YR OVRB OVRB OWRB 9VRB

+

J J

The derivatives of Equations (41) are:

URB - g0

IWRB

dVRB _ 1

dvVRp (V2 - vRBz) e
30Rp !

aWRB

1
9 )
aWRB (Vz(Oszd/RB - WRB")

/2

(41a)

(41b)

(42a)

(42b)

(43a3)

(43b)

(43¢)




00Rp ‘ WRB SINVRB
= - 43d)

ovpg | (V2COS2yRp — wrp?) COSYRp | { (V2 vgp?)

Equations (43) are substituted into Equations (42) to obtain 30 RB/aCj and E)l,!/RB/E)(‘j which are
used to form the matrix [B], Equation (40). The system of correction equations used to correlate
the angular motion data is stated as follows in matrix notation.

(BIV (wirBrjracy)=(B1T (W][R]

1 0

[W]= 0 1 (44)
0 O

=sC0o
w

Equation (44) represents a weighted least squares formulation to correlate ORB: VRp- and ¢. The
[W] matrix is used to weight the correlation of ¢ since the measurement errors on ¢ are of the
order of 5 to 10 times larger than Orp and YRp-

where:

W3 = weighting factor on ¢
Derivation of the partial derivatives for Equations (38) is contained in Appendix A. The velocity
is assumed known from analysis of the swerve motion and is therefore not treated as a dependent
variable,

The yaw data correlated during analysis of the angular motion, Orp and YRp: is
transformed after the swerve analysis as follows:

VRB = VX[ SINOFPSlNd)COSd/ FP— COS¢S[N¢'FP | (452)

+ VZ SINgCOSO EP

WRB ~ Vx[ SINO FpCOSd)COSl,’/FI) + SlN(ﬁSlN\I/Fp ] (45b)

+Vy [ SINO:pCOS¢SINY rp — SINGCOSY p |

+ VZ COS¢pCOSo FpP

. R e aa's e

=T e



s i

- -1
| WRB
0pn=SIN! [——
RB [VcoszB ] (45d)

In summation, the measured six-degree-of-freedom data (X, Y, Z, Opp, ¥pp, ¢) are
correlated as follows. The position data are fit to Equations (34) resulting in a determination of [ 7
the aerodynamic force coefficients. The yaw data (9 gp and Y p) are then transformed to the
body-tixed coordinate system using the computed earth-fixed velocity components, Vy, Vy, and ;
V7. Equations (45) are the transtormation equations used. The angular motion data (0pp, VRB:
¢) are then analyzed using Equations (38) to result in a determination of the aerodynamic
moment coefficients. A weighted least squares formulation is used to account for the larger

measurement errors in ¢ relative to Ogpg and Y pp-
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SECTION IV

PROGRAM UTILIZATION

Data acquired from the Eglin Aeroballistic Range Facility consist of photographic records
of the angular and linear position of a body in free flight. The photographs are taken from
surveyed stations spaced on the order of S to 20-foot intervals along the length of the range. The
records are obtained from dual-axis spark shadowgraphs. Optical axes at each shadowgraph
station are mutually orthogonal with the range centerline. A film reader is used to result in
numerical interpretations of the shadowgrams which provides histories of attitude and position as
functions of time (X, Y, Z, O0pp, VEp @ Vs. time).

The six-degrec-of-freedom data is then correlated to the equations of motion as derived in
the body-fixed coordinate system. The acrodynamic model used is derived in Section 1I and the
data correlation technique is detailed in Section 111,

REDUCTION PROCEDURE

The normal reduction sequence to determine the force and moment coetficients consists of
the execution of five computer programs. The final two computer programs are for simultaneous
reduction of up to three rounds of similar configurations. Figure 6 represents a basic block
diagram of the reduction sequence illustrating the flow of information between programs. A
description of the function of each program follows.

ROLLNUT o  Preliminary transformation from carth fixed to missile angles.
Fits missile angles using modified linear theory.
Computes dense profile (relative to data profile) of body-fixed angles
and angular rates from approximate ..ansformations for use in
ROLL-HEEVE.

e  Computes initial conditions for ROLL-HEEVE and ROLL-ANGLES.

ROLL-HEEVE o Provides a best fit to the position data using carth fixed equations of
motion.

e  Provides a preliminary fit to the roll data (¢) assuming Ixy =().
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e EARTH FIXED ANGLES VS. TIME ACQUIRED e PHYSICAL PROPERTIES OF MISSILE

e TRANSLATION COORDINATES VS. TIME g:';‘g'f e ATMOSPHERIC CONDITION OF RANGE

RESULTS: (APPROX.)

e BODY-FIXED ANGLES
e BODY-FIXED ANGULAR RATES D
ROLL-NUT e INITIAL CONDITIONS

REDUCTION OF:
e MISSILE ANGLES USING
LINEAR THEORY

OM' ‘pM' ¢

REDUCTION OF:
e TRANSLATION DATAWITH EARTH
FIXED SWERVE EOM
e ROLL DATAWITH APPROX. EOM “XY =0)

RESULTS:

e AERODYNAMIC FORCE & ROLL COEFFICIENTS

e TRANSFORMATION TO BODY-FIXED ANGLES E
(EXPERIMENTAL DATA)

ROLL-HEEVE .
X,Y, 2.0 I~ AERO-FORCE

DATA COEFFICIENTS

MANGLE
DATA
ACCUMULATOR

MUL-HEEVE
DATA
ACCUMULATOR

AERO-MOMENT DATA”
COEFFICIENTS [ ROLL-ANGLES |~

Orp Ve ¢

REDUCTION OF:

® BODY-FIXED ANGULAR MOTION DATA TO FULL 6DOF
EOM

RESULTS: AERODYNAMIC MOMENT COEFFICIENTS .

|

¢ SIMULTANEOUS REDUCTION |

OF SIMILAR CONFIGURATIONS |

e DETERMINES OPTIMUM COMMON I
AERODYNAMICS FOR CONFIGURATION X,v.2,¢ I ~

I

MANGLE
o

MUL-HEEVE
I
HB- VHBJ ¢

SIMILARITIES

Figure 6. Body-Fixed Data Analysis System
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e Transtorms the fixed-plane angle data (¢pp, YFp) to body-fixed

angles (ORpp, YRp) using the computed carth-fixed velocity
components and experimental roll data.

The total velocity protile is computed for use in ROLL-ANGLES.
Results in the acrodynamic force and roll moment coefficients.

ROLL-ANGLES e  Provides a best fit to the angular motion data (Ogg. YRR ¢) using
the body-fixed equations of motion.
e Computes a dense profile of the body-fixed angles and angular rates
for a final swerve analysis (ROLL-HEEVE).
o Results in the aerodynamic moment coefticients.

MANGLE e Simultancous angular reduction of up to three data sets from similar
configurations.
e Determines optimum common acrodynamics corresponding to
configuration similarities and unique coefficients per data set to
those parameters which are not common.

MUL-HEEVE e Simultaneous swerve reduction of up to three data sets from similar
configurations.
e Determines optimum common aerodynamic force coefficients
corresponding to configuration similaritics and unique coefficients
per data set to those parameters which are not common.

The input required to execute each program is defined in Appendix B.

During implementation of the derived model (equations of motion) and data correlation
technique, options were included such that the data analysis could be made using symmetric
aerodynamics. These options exist in the form of an additional set of aerodynamic coefficients
paralleling those derived in Section H. For example, the pitching moment coefficients Cy,, , and
Cnﬁ are paralleled by C,,.= which is the symmetric pitching moment term. The purpose of these
options is three-fold. If the data being analyzed is on a symmetric configuration, tiren the
symmetric acrodynamics should be computed while setting the nonsymmetric coefficients to
zero. Sccondly, if only slight asymmetries are present in certain forces and moments and the
quality of the data is not good enough to determine the asymmetric effects, then the forces and
moments may be constrained to be equal in each of the body-fixed planes by using the
symmetric terms. Finally, when initial estimates of the acrodynamics are not very good, initial
execution of the programs should be done using the symmetric terms such that convergence will
be assured and improved initial estimates determined for the final analysis. A definition of the

complete set of acrodynamic coefficients and equations of motion for cach program follows.




The program ROLL-HEEVE which does the swerve analysis includes a preliminary analysis
of the roll data. The equation of motion was simplified by assuming lxy equal to zero. This
correlation of the roll data is done independently of the correlation to the position data.

The sign convention of the acrodynamic coefficients in some cases differs from the
derivation. The signs reflected in the following equations are exactly as programmed. The user is

advised to use these equations to verily the sign convention of determined coefficients resulting
from the computer programs,
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ROLL-NUT Equations of Motion
)\ X . 3]
0,,=Kje USIN (9] +w X + &X2/2)
A")X L)
+ Ky 27SIN (9 + woX + &5X2/2)
+ K3SIN (93 +¢) i
A X . o) { ‘.
Um=Kie 17COS (9] + w X + & X2/2) 3
AHX . (4
+Kpe 27C0S (93 + wyX + $1X2/2) ;
+K3COS (¢3+¢)
Parameters to be determined from correlation:
Ky = nutation amplitude vector, degrees ’
A = nutation damping exponent
ki
o1 = initial orientation of nutation vector, degrees L
= ' ;
w) = nutation frequency, deg/ft 4
. . . L -
W] = rate of change of nutation frequency, deg/ft= w
%
K4 = precession amplitude vector, degrees !
- ¢
Ay = precession damping exponent
¢> = initial orientation of precession vector, degrees 1
wH = precession frequency, deg/ft E
. . .- L0
(1)2 = rate of change of precession trequency, deg/ft~
K3 = trim amplitude vector, degrees
¢3 = initial orientation of trim vector, degrees
‘ 34
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ROLL-HEEVE Equations of Motion 8

pAV2
V= ( o ) e xCOSO pCOSY Ep — C, (SINOFPCOS¢FPS]N¢ SINY gpCOS¢)

FA |

| — C, (SINO pCOSYEpCOSY + SINY 1:pSING) I

pd
+ Cyp (—27) (SINOFpSqu&COSd/Fp — SINYpCOS¢)

pd
CZp (— IV )(SlNOFpCOSgbCOSd/FP + SIN¢SINY Ep) |

L) p’&vz —_—
Vy = (=) [ - C,CO80pSINYEp — Cy (SINOEpSINYEpSING + COSY pCOSP)

S el e 4 e LS

— C, (SINGpSINY pCOS$ — COSY pSING)

e

_ v
+ Cyp (W) (SINO pSINYEpSINg + COSy pCOS¢)

pd
CZp(2 ) (SINO gpSINY ppCOS¢ — COSY pSING) |

pAV?2
5—) |~ CSINOgp — C SINGCOSORp

V,=(

K pd

pd |
~ Cpp (557 COS4COSORp | - \
qAd  pd I, -1

Z

¢ 4

y
Y[ (53 Cp + Cos + Cog SIN2T SIN(ng') ] + ) qr
X

¢ =p+TANOEp (q SINg + r COS¢)




ROLL-HEEVE Equations of Motion Continued

where: :

n = no. of fins, i.e., no. of symmetries )

YRB i
¢'=TAN! (—) |
WRB i
2 2 -
Cy=Cyot Crar o) *+Cxpa () *Cxm (M —MREF) +Cyg2SIN“a | |
‘ wo P T e e
RB RB RB ,_ 'RB
Cy = Cyo+ Cyp () + Cyp3 () +:cN () CNa3SINa (; ):
w W 3 T T waw T T T T T T Wen
RB RB = | RB RB ! :
C,=Cyo+ Cop )+ Caa3 ) +|CN (———)+ CNg3SIN® @ (—) :
WRB :_ T _:
Cyp=Cypa 2 +Cypa 7
—————— !
i
LR A, ‘
Cop= Copp ) Cypa () .
B | '
1 | - SYMMETRY TERMS .
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ROLL-ANGLES Equations of Motion

2
L+l =1 D Tpr+ [ 2+ 1, (4 — 1) Tar+ 1y Ly + 1, Lg

p= :
(xly — 1y
CTOxH Iy = L Var — [ 24 1 0y 1) Tpr+ T,y Lo+l L
q:
2
(yly — 1y
202
r:

I,

¢ =p+ TANO gp (q SINg + r COS¢)

0 = q COSp — r SING

V= g SINgCOSO zp — TURB Y PWRB * Fy/m

W= g COS¢COSOFP — pvRpg tqQurpg * Fz/m
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) ROLL-ANGLES Equations of Motion Continued .
: where: &
t
e T 4
_ VRB VRB 'l YRB ,. VRB | i
Normal Type Cy=-Cyo - ¢ YB( v ) C YB3 ( v ) - Cng ¢ ) - CNg3 SIN-a (—V—) | _7
pd WRB | T —p(T - -‘;R_B~|
- 3 - ) (e | = (—
Magnus Type +( Ypa ¢ v ) ( v ) |+ CYpa( SV ) ( v ) ||
’ YRB
Induced Normal* CNoa SIN (ng") SIN- a ( )
, WRB
Induced Side* +Cysa SIN (ng") SIN-a ( Y )
S e f
B WRB WRB : WRB ,_ “rB ! 1
Normal Type Cz= Cz0 Crat—— Czaatyg™ | a5 Oa3 SIN?@ (—; ):
5
————————— |
T— I L : . & |
Magnus Type 7B (—2-\7) (--v—) . C Ypa (W)( v ) |
,_ “RB
Induced Normal* Cngg SIN (ng") SIN- al y ) ’:
:
. VRB i
Induced Side* Cygg SIN (n¢’) SIN=a ( T )
* Not included in current program. ,
h
-7 l 4
| I SYMMETTRY TEERMS \
= = |
{
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Pitching C

Damping

Magnus

Induced Pitching
(ITeq. effect)

Induced Side Moment

(damping effect)

Pitching

Damping

Magnus

Induced Pitching
(freq. effect)

induced Side

(damping effect)

Roll Trim

Spin Decay

induced Roll

ROLL-ANGLES Equations of Motion

WYRB | YRB

=C )+(ma3(

m-Cmot (

ma (

qd qd WRB

n]q (“—) n]q‘) ( ) ('—'V— )

pd v RB
CI“[)B ( 2v

m¢a = SIN (n¢") SIN a(

YRB

+C SIN (n¢’) SIN? @ (—V—~)

néa
YRB
Ch=Cho —Cng (_V—) ~Chpa Y,

rd rd VRB ~

+Cop b7+ Cor2 (72 () :C

pd

+ Cnpa (-Z—V) (‘—-\7—*—) +|C

Cinga SIN (ng') SIN? @ ( v

“RB

+Cog SIN (ng") SIN? & ( )

+Cyy SINZTSIN (n¢))

)SIN“a'
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SECTION V

DATA ANALYSIS RESULTS

Since the model derived in Section Il represents a large class of flying objects, it is necessary
to extract by coefficient variation that one which corresponds to the actual missile as observed
by tests, specifically the free flight motion of a nonsymmetric body. The basic form of the
body-fixed six-degree-of-freedom equations of motion is common to the field of Free Flight
Dynamics. The basic aerodynamic forces and moments assumed to be acting on a nonsymmetric
body as discussed in Section II have been used in missile and aircraft design. Modeling of the

nonlinearities in the forces and moments as well as induced effects is not nearly as common and
is difficult to determine from the literature.

Preliminary checking of the programs described in the previous section was achieved
utilizing an ideal test case generated using a six-degree-of-freedom trajectory program. The test
case was essentially that of a symmetric cone. The purpose of using such a test case was that
during development and implementation of the programs a major concern in verification was to
insur that the transformations were correct in going to body-fixed coordinates, the ditferential
corrections procedure was properly implemented, and in general the entire reduction procedure
was consistent. This approach proved valuable towards preliminary verification in solving
problems during implementation.

Ballistic spark range data on two elliptic cones were provided by AEDC for analysis. The
cones had non-equal transverse inertias (ly:=lz) which provides an indication of the asymmetry
involved. The physical properties are tabulated in Table 1. Correlation of the free flight range
data to the six-degree-of-freedom equations of motion was done using the reduction procedure
detailed in Scction IV. The results of the analysis are tabulated in Table 2. These acrodynamic
coefficients result in a probable error of fit to the data which is about cquivalent to the
acquisition crrors, The clliptic cone was treated as a two {in configuration for the induced effects
since a plane of symmetry is encountered every 180 degrees. The maximum yaws for the two
clliptic cones were about 6 and 3 degrees for Cones No. 1 and 2 respectively. Figures 7 and 8
illustrate the free flight angular motion of each cone as plotted in the body-fixed coordinate
system. These plots illustrate the correlation to the angular motion data resulting from single
reduction fits. Figure 9 illustrates the fixed plane angular motion of Cone No. 1.
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TABLE 1. PHYSICAL PROPERTIES
CONE Vm DIAM. | LENGTH { WEIGHT I ly L, lxy
NO. (Ft/sec) | (Inches) | (Inches) (Pounds) (Lb-inz) (Lb-inz) (Lb-inz) (Lb-inz)
] 8410. 1.484 4.704 0.2293 [0.04158 | 0.35180 | 0.33933 0.
2 8395. 1.484 4.699 0.2338 [(0.04220 | 0.35640 | 0.34350 0.
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Simultaneous swerve and angular motion reductions were performed utilizing the programs
MUL-HEEVE and MANGLES. The result, Table 2, of this final reduction was a better
determined set of common aerodynamics with a unique set of trim coefficients for cach cone.
The spin or roll rate dependent acrodynamic effects (magnus and spin decay) were not computed
since the roll rate was very small.

The accuracy of the determined force and moment coefficients must be discussed in terms
of their importance towards affecting the observed motion of cach cone. The angular motion of
Cone No. | was about twice the magnitude of Cone No. 2 and contained a roll reversal whercas
No. 2 had an increasing roll angle throughout the flight. Intuitively, it should be expected that
the correlation of data for Cone No. 1 would result in better determined cocefficients for the 2-to
6-degree angle of attack region, and Cone No. 2 for the0- to 2-degree region. Assuming that both
cones represent the same configuration, simultaneous correlation to both sets of observed motion
should result in determined aerodynamics covering the 0- to 6-degree angle of attack region.

The computed trim moments (C Cpo) were of small magnitude, but well determined

since they are dominant terms in the rcn(;)uutions of motion. They result in trim angles of 0.214
degree for Cone No. | and 0.291 degree for Cone No. 2. The pitching moment coefficient
derivatives (Cm, C"B) were well determined and differed by about 28 and 21 percent for Cones
1 and 2 respectively. A roll induced pitching moment term was computed for Cone No. 1.
Inclusion of this term into the model being correlated to the data resulted in reducing the
probable error of fit to the angular motion data by 10 percent. The induced pitching moment is
plotted as a function of aerodynamic roll angle and angle of attack in Figures 10 and 11
respectively. The contribution of the induced effect to the pitching moment is of the order of 3
percent for Cone No. 1. The correlation to the angular motion for Cone No. 2 was not improved
by including the induced effect in the reduction. This is probabiy a result of the smaller angular
motion and may, in part, account for the difference in CnB between the single reduction fits.
Simultancous analysis of the two cones resulted in a common pitching moment with induced
effect included.

The induced roll moment ((‘,%) was very critical in correlating the roll data since the spin
rate was very 'small. The roll history for Cone No. | contains a roll reversal. Figures 12 and 13
illustrate the induced roll moment coefficient plotted as a function of acrodynamic roll angle and
angle of attack, respectively.

The damping is probably the most difficult parameter to determine. It is a dynamic term
and considering the time period (0.1 second) of the data, its effect on the motion should be
relatively small. The damping moment cocefficient determined was constiained to be equal in cach
body-fixed plane. Computation of unique moment components in cach plane resulted in no
improvement in the correlation to the data.
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Simultaneous analysis of the swerve data resulted in valid axisl force and normal force
coefficients for the 0- to G6-degree angle of attack region. Table 2 indicates variation in the
coefficients determined from individual fits to the data. However, considering the distribution
and magnitude of the angular motion data (Figures 7 to 9), the actual forces computed are
consistent between the individual and multiple correlations to the data. Cone No. 2 had small
angular motion. Therefore, computation of axial force as a function of angle of attack was not
meaningful. It is felt that simultaneous analysis provided a good distribution of data to frcsult in

an accurate computation of the force coefficients.
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SECTION VI

CONCLUSIONS

SUMMARY

A model (equations of motion) has been developed which is capable of computing the six-
degree-of-freedom trajectory of a nonsymmetric missile. The derivation of the dynamic equations
does not include the effects of the Earth’s curvature and rotation. The forces and moments
considered to be acting on the missile are described in a body-fixed coordinate system. The
inertial frame of reference for the model is the Earth. Acrodynamic coefticients are used to
define the forces and moments. They are assumed to be nonlinear functions of the total angle of
attack, components of the angle of attack, and the aerodynamic roll angle. Polynomial
expansions are made as functions of the sine of the aforementioned angles. Mach number
dependencies of the forces and moments have not been included with the exception of the axial
force. Modeling of the forces and moments has been done to include a large class of flying
objects. The generalized model is suitable for application in the analysis of ballistic spark range
data.

Ballistic spark range data provide the actual trajectory. The analysis of that data requires
adjusting the acrodynamic coefficients of the equations of motion such that the theoretical
trajectory matches the actual. A least squares data correlation technique has been developed
which forms the basis of a sensitivity analysis used to adjust the coefficients. A system of
sensitivity equations of partial differential equations are developed based on a truncated Taylor's
series expansion. These are derived from the six-degree-of-freedom equations of motion. Using
the least squares method of correlation, analysis of the translational motion is decoupled from
the analysis of the angular motion,

Five computer programs have been developed to result in a data analysis system for
correlating ballistic spark range data or a nonsymmetric configuration. The first program of the
serics (ROLLNUT) correlates the angular motion data to a modified lincar theory yaw equation,
The primary objective of this program is to compute initial estimates of the lincar acrodynamic
coefficients and initial conditions, and approximations for the body-fixed angles and angular
rates. The second program, ROLL-HEEVE, is used to determine the acrodynamic force
coefficients through correlation of the translational data (X, Y, Z) to the carth-fixed cquations
of motion. Correlation of the angular motion data (Opp. YRp. 9) to the body-fixed equations of
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motion is done next in the sequence using ROLL-ANGLES to determine the aerodynamic
moment coefficients. These three programs are capable of computing the optimum set of
aerodynamic force and moment coefficients to minimize the probable error of fit to a set of
ballistic spark range data. The remaining two programs are used for simultancous correlation of
up to three sets of data on similar configurations to determine a common set of acrodynamic
coefficients. The program MUL-HEEVE is used to correlate the translational motion, and
MANG l/f? correlates the angular motion data. The equations of motion and sensitivity equations
are numerically integrated using a fourth order Runge-Kutta technique.

Simulated motion was used for preliminary checking of the model and data correlation
technique. Ballistic spark range data on two elliptic cones was analyzed using this data analysis
system. The resulting probable error of fit was approximately the experimental accuracy of the
data. The side force, normal force, pitching moment, yawing moment, and trim forces and
moments were determined. A roll in:hico ¥ moment dependent on the acrodynamic roll angle and
square of the total angle of attack was also determined. Simultancous analysis of the two data
sets resulted in a well determined set of common acrodynamics for the elliptic cones.

RECOMMENDATIONS

As previously stated, the model represents a large class of flying objects. Therefore, given an
actual trajectory, there aie many possible combinations of acrodynamic coefficients available to
consider in determining those which represent the forces and moments on the missile.
Information contained in the system of sensitivity equations could aid in determining which
acrodynamic coefficients provide the most accurate representation in matching the actual
trajectory. This should be considered in future investigations.

The acrodynamic model derived is felt to be accurate and complete for the analysis of
ballistic spark range data on a nonsymmetric configuration. It has been successfully used in the
analysis of two clliptic cones. However, it should be noted that there are many possible
formulations of the acrodynamic forces and moments. As more experience is gained in analyzing
asvmmetric configurations, improvements in the manner of modeling the acrodynamics may be
desired. These improvements will probably be in the functional relationships of the forces and

moments on the angle of attack, angle of attack components, and acrodynamic roll angle.

Least-squares theory has been used as the basis for the sensitivity analysis which represents
the data correlation technique. The swerve motion is decoupled from the angular motion
resulting in a two-phase data analysis concept. This concept has been very successful in analyzing

a large number of data sets on symmetric configurations (Reference 14-22) as well as in analyzing
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the two elliptic cones on the body-fixed reduction programs. However, the Maximum Likelihood
Method is also a suitable data correlation technique. This technique can be used to correlate all
six degrees of freedom simultaneously for a determination of the aerodynamic force and moment
coefficients. Briefly, this method has the capability of introducing statistical information
pertaining to the measurement accuracy into the reduction process (Reference 24). Ballistic spark
range data has been analyzed using the Maximum Likelihood Method (Reference 25). It is
recommended that consideration be given for utilization of this technique in future investigations
towards eliminating the decoupling of the swerve and angular motion analysis.
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APPENDIX A .
EQUATIONS OF MOTION
PARTIAL DERIVATIVES SWERVE ANALYSIS

Derivation of the partial derivatives used in the swerve analysis follows. Parameters

computed during analysis of the angular motion are wRB/V, VRB/V> Opp. VEp, and ¢. These are
not treated as dependent variables.

The acrodynamics used in the swerve analysis are defined as follows:

Ex = Cxo *Cxaz (5\;71" Cx@z (%)1* Cont (M-MREF)

3
y = Cye t Gy %)"C)‘pa(y\‘:g)

Y
il

— Wag Wrag |3
Cz = Cxo + CZ-t (T o CZ«S (T)
— Wig
Crp = Crpx v )

Ezp: C:P‘S (%

Consider the V, EOM:

. SAV? — N
Vi = ( 2m )[" Cy €05 E,,COS Yer~C, (sw 8rp COS W,FS/Nﬂ-S/NWF,.CO:;p)
N (swen.cosw,:,,cosz +SIN Yrp SING )
— Pd
t Cyp (EV) (sweFP SIN@COSYsp= SIN Wp COS B )

— Cis (,28:;1) (SIN8ppCOSBCOSWsp + SING SIN Wee ) ]
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Taking the partial derivative of V:

/ vV C;
Weo g, 2,k 2 (A-2)
dC; ¢, JC;
where: F
2

AV 2 /V 2
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= 2C, (siN©rp COSWrp SING - SIN Ypp COSPB )
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Taking the partial derivative of Vy:

o¢; ¢ H9¢; (A-4)

where:
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Taking the partial of Vo

9 VZ - A3 _Q_\—/— + K3,| ?.E'J
e 7 2L (A-6)
| 4 i .‘
where: i' -
fAY [ Wap)? Voo \? y
Az < ( 2m ) '<?Cao‘?Cx~z< v ) +2Cxp, T“) "‘C.m(3m-2m;.’sF)) SINGsp E
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2C)’ (s’N¢C05erp)'2Cz (COS;ﬁCose;p) + CVP <2\')(5/N¢C05erp) I
. ]
- CZP (ZV) <C°5¢C056;P) }
Equations A-1, A-3, and A-5 arc the equations of motion used to correlate the position data. I
Equations A-2, A-4, and A-6 arc the corresponding partial derivatives. A preliminary analysis of i
the roll data (¢) is done during the swerve analysis. The following equations of motion are used
which assume that the product of inertia, ]xy’ is zero. g,
0 a4d Pd Ly
P = Ix )[(R)C[,,*Qs * Gy SIN' & snv(n;a’)]*( T, )‘3r (A7)
.
@= P+ TaN &, (Asivp v rcosp) e
wher¢: n = no. of fins or symmetries
¢' = aerodynamic roll angle 3
! VRB
| = TAN "1 (—— .~
| WRB !
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Taking the partial of P:

P . A, 2P 4 ok 24 (A9)
PC; 2C; Qci t
where:
qAd d :
Ay = —)C
4 ¢ L )(2V) o

Partial of P with respect to the j Th coefficient

K4] =
Taking the partial of ¢: 4
&
20 _ 2P 4, 28 (A-10) ‘
where: i
Asz TAN@;p(?COSﬁ‘r‘JIN¢)
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|
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ANGULAR MOTION ANALYSIS

Derivation of the partial derivatives used in the angular motion analysis follows. The total
velocity is treated as a known based on the swerve analysis.

The aerodynamic forces and moments used in the angular motion analysis are as follows:

Ly = 3ad [ CautCoi ()¢ Cons (V4 (),
+ Cm72 (gg)(%a)z* CMpg ig\:-{)(;\\:ﬁ +Cmpv(5m’;(5’”(’7ﬂl)(i\/}e)

+ Cagw SIN’& SIN(ng”) (1\,7}’)] (A-12)

?AJ[CM *Cop —VEB) "pa(x\r&‘)s m—< )(WB)

R 2 1]
+ Coes GV) () +Cope (TN () Capue s siv(ng?) (V)

t Cage SINZ SIN(RE?) (—"‘t/i“) ] (A-13)
F}'= ‘?A [C)'O+Cr§<‘v-.°) Cyp_;(we )’P-l (2‘{)(“’.“)] (A-]4)
A [Czo e, (%@ Cevs ( ") Czep _2%/)( 174,)] (A-15)

Note: The induced normal and side forces indicated by Equations (39a) and (39¢) are not
included in the programs.
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For convenience of derivation, the following identities will be stated: b

2 r}
SIN® & = Vee © Yag -
vl
gy Va :
cueog) - sine (n () 4
2 sin(no’) wr |
PEINY = ————=cos(ne&’) | ®e §
2 (o) | e i
2 s (ng’) i
PFINW = . —cos(ng’) Vs |
J Wio Vae +und ,z
9 sinE SIN(E) -
- = v, 2 , __b'..s 1
PSFSAV = 3 Ve = SIN ev(PFmv) + SIN(n¢)< V’) 1
9 sin?= 5IN(nD") !
- T ————— S L s 2“"6
PSFSAwW e SIN o((PF/Nw) +sin(ne ) v ) -
(3
9[5,N7:/51N(n¢‘) ALL ,
PINDVY = v )] = PSFSAVY (:\f‘ﬁ) + SIN'Z sIN(n D) (’VI') )
9 Ve 7 :
iz 4 _u__,éa wh f:
PINDWW: ) [SIN S/N(na)( Y )}___ PSFsAW('VL&)*S/Nz;’SIN(I‘)ﬁ’)(_VI') !
e ’
i
rs¢ = (Ix*Iy—Iz) I‘y i
IsS2 = (I")‘J +Zy (Ir'fz)) ;

.[53 = (I,I,‘Ixy’)

rs4 = (Ix (Iz—Ix)-Ix,")

(Tx-Iy )

N
wn
A

H




The dependent variables to be considered in taking partial derivatives are p, q. 1, 0pp. ¢

VRR- and wgg. Derivation of the partials follows.

Consider the f’ EOM:

P = Tylp + Ty Ly-(xs1) Pr+(z52) 9r

Is3

Taking the generalized partial of P:

oF
. o

C.
;Bzg_i +BJQL+B‘%+BSQ~MB+KS ?'*J

i
QCJ ';)Cj QCJ ;C‘ DCJ
_ _ Is! Ly Rip  Iny Il4
B, Is3 Is3 2 Is3 9
8 Is2 Ix, g
2 Is3 I53 &9
Is2 s/
By = Is3 rssp

783 9V, IS3 3;,

.I' _QLD + IK)‘ QL'
93 Jupy  Is3 D Wrg

KSj = Partial of P with respect to the j Th coetlicient
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Consider the (.] FOM:

& - EelytTmle ES)AC (TS PE
rs3

Taking the generalized partial of qQ:

..9_: D, §£+D793+D39_£ +D4?-V—;-a"‘bgaw55 "'KG.]
Q¢ G QCJ ~C; 9C; 2¢;
where:
o <IS4)F e Ix qu 2 Ixr oL
' 133 Irs3 Q9P sy P
<I5/) Ty 24
= S— Lx =223
Dz 753 t Ts3 29
(1s!) (rs4)
= g+
D, Is3 17 T3
D Le Phe, dy 2ce
4 TS53 9V  IS3 dVag
D = ‘_t_f__ ?—é-l . Ixy ip_
g IS3 JWep IS3 Juwig
'(6j = Partial of('l with respect to the j Th ¢oefficient
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R T

Consider the r EOM:

Le + Lo (Pr-q2) ¢+ (X$5) P9 (A-20)
Iz

r =

Taking the generalized partial of I

ik
i EF
. ) ¢
CA E,ED_E "'Ezp—i*Esa'c+E42—YL°+ES'2""‘M°+KTIE‘£J (A-21) '
2¢; ¢ oG ¢ ¢ JdC J¢ $
¥
where:
£ = 2Ty P (zss), , L i |
y Ty 2 I: 9P !
;
E = (ISS) P = Z£ﬂ %
2 T2 7, 9

_ L Pl

Es = 1, 2

. 2dic
Ey =1, 9V -
k
_ Ple i

Es T SJui,

K7j = Partial of r with respect to the j Th coefficient |
h
?

s
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Consider the vy EOM:

Vg = FPWke " V<tret Fy/m= 9 SINGCosOp

(A-22)
Taking the generalized partial of ‘.'RB:
A
?Gf:F,?f+F,?.C+F39_Y18+F4‘?~“~’_;45+F;_9_§_‘£+F69—g (A-23)
QCJ QC"‘ QCd QCJ aCJ DCQ QCJ
where:
. L L PF
Foo= winr@ 55 ;
|
]
FR, = ~<<eg i
)
; 2F,
Fy = m -
3 m ‘;-V:e
by
/ QF) %
F, = P =
4 M Quig ik
Fs = 9SINgSINOGgp ]
'i_
Fo = -3cCc3@cos56;p
Note: The Kj term does not appear since only the acrodynamic forces appear in the ‘.’RB and
\'VRB cquations of motion. These coefficients are not being determined by the angular %
motion program. ¢

1

o j§




Consider the V.VRB EOM:

Whea= 9 4teg- P Vag *fr/m-9cos@Cos Gep

(A-24)
Taking the gencralized partial of \;VRBS
W _ g 2P L, 39 . A€ ., e ¢ W, o D0
where:
¢t DF,
G, =" Vet m —QT:
G} = MRQ
- o 2F;
Gg=-FPrm JVas
SDF
Gy = 75 22
4 m EDY
C: —

s T FCcosZsiNGp

GCe = 9SINFCOS6;p




Consider the :p EOM:

;'Z = P * TANG‘FP(ciSIN¢+f'CO5¢)

Taking the generalized partial of ¢:

¢=H,9'E+H—Qﬁ-+HQ_(.-+H;eFP*H2_g
L "QC.-I IQCJ 39ci A 9C; s JC;

/IO
FAN Grp DIND

TAN B:p C05¢

o (asiNT rcosd

raneer (qcovd - cSING)

Consider the (3 FOM:

o = qcos@-rsSING

Taking the peneralized partial of 0.

26 . 22 L sin A sing +1r €OS@ i (A-29)
rh cosP S, INg oe, (asivg + ) oc;
J




Taking partial derivatives of Equations (A-11) through (A-15) results in the following:

_ N

p . Fad (5v) Cee

9

Dlp - GAad Cip (PSFSAV)
~\Ze

Dls = AL Coy (PIFSA w)

1Q)
]r\
[t}

-G

Ad( )Cmr‘B(y\#)
Ala - a4 (= )(cm9+6m,1(”“’))

29
Qls ‘—?Ad[({‘é) Cmpp<—\;—) +me( )(P‘F‘;A\() + Cogot (PIND\/V)]
@ Vig

—"?Ad[cm.((ﬁ*c"w% 2 ")*Cmez( ) Maﬁa)

+Cm¢a((PINDWW)+Cn‘-..' RV )<05P54W)]

5
[

A‘; dlr _ gad (5%) Cnp..((f-‘\;‘—‘?)

. Gad (yd;)(cnmcmz W“’))
3

te Ef-ﬂal[Cnp( +C”P3(3W° +C"”~<;$)(1V‘B)

S

= Cmgx <PIN.DVV) + Cnod '\}L)(PSFSAV)]

R 4

Dilse qu[ Pd)cnfw< +)- (mm(\ﬁ)(PanAw)

Dw.,

+ Cng.—-.' (PI_NDV\'T() J
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?;%: aa (35) Croe (55

3Fy . g4 [€,e (V) * Cras %))

dVis

_:7)_5’_—_ gA [C)’P‘“ %)<_‘§)J
F Wrg
2. G (57) Care (<

2= 94 {pf,j‘) Czps <$)

[}

=z G—IAJ [C:..z<_\£r') +C2d3 (_B__U_f_E;_ ]

V!
DUy
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APPENDIX B
COMPUTER PROGRAM INPUT INSTRUCTIONS
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3
1
!
3
]

CARD NO. 1 (10A3)

IBM Col Variable
1-30 SHOTN
CARD NO. 2 (717)

1-7 LN
8-14 NA
15-21 ND
22-28 NAUTO
29-35 NROLL
36-42 NCOORD
43-49 NBODY
Normal Settings -  Eglin
NAUTO 0
NROLL 0
NCOORD 1
NBODY 1
CARD NO. 3a,z (7F10.0)
1-10 TG
11-20 XG
21-30 YG
31-40 JAY

ROLLNUT INPUT

Descriptor

Titie Card

Start point of fit
End point of fit
Incremental section length

0 input ©yj, w2
1 input CMAE

0 roll data on card No. 3
2 roll data on card No. 5

0 ALDC data
1 Eglin or test case data

o

Output in fixed plane
1 Output in body axis

AEDC
0

2

Time, scconds

X , inches
rangce

Y , inches
range

A , feet
ranpe




CARD NO. 3a,z (7F10.0) (continued)
i 41-50 DMG m
3 direction
3 51-60 DNG n cosines
61-70 DPE p or ﬂFP (see NROLL)
g : CARD NO. 4 (1F10.0)
1K
P | 1-10 TG TG = 200 (stop card)
|
{
il | Note: Card No's 5 and 6 are not supplied when NROLL = 0.

CARD NO. 5 (2E1l4.6, 1F14.0)

1-14 PHI ﬂFP
15-28 DUMMY Zg - not used
29-42 DUMMI

CARD NO. 6 (2E14.6, 1Fl14.0)

e s e et A st

1-14 PHI

v
15-28 DUMMY
29-42 DUMML DUMMI = 200 (stop card)

CARD NO. 7 (7F10.0)

1-10 DIA diameter, inches
11-20 AIX 1, 1b o 1
| 21-30 ALY Iy, 1b in’
31-40 AlZ IZ; 1b 1n2
41-50 AIXY 1
Xy
51-60 WGT weight, 1lbs,

61-70 ACG CG offset, inches




CARD NO. 8 (4F10.0)

1-10 XCGR
11-20 XLR
21-30 XCG
31-40 XFIN

CARD NO. 9 (3F10.0)

1-10 RHO
11-20 ASOUND
21-30 VMACH

CARD NO. 10 (4F10.0)

1-10 CNA
11-20 CMAE
21-30 CP

31-40 CLD

CARD NO. 11 (6F10.0)

1-10 CA
11-20 CB
©21-30 cC
31-40 CD
41-50 XXREF
51-60 CNOT

let X = (Xi - XXREF)

Reference CG, percent of length
Reference length, inches
CG, percent of length

No. of assymetries or fins

density, slugs/ft3
speed of sound, ft/sec

reference mach no.

CN estimated
o

CM estimated
o

Cl estimated
p

C estimated
1

linear theory

roll constants

PHI = CA(X) + CB(XZ) + CC(X3) + CD(XQ) + CNOT
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CARD NO. 12 (7F10.0)

1-10 B(1) K, :
11-20 B(2) K, E
21-30 B(3) A ]
31-40 B(4) A, j
41-50 B(5) 8, i
51-60 B(6) P, s
61-70 B(7) w,

CARD NO. 13 (5F10.0)

1-10 B(8) v, .
11-20 B(9) &1 ;
21-30 B(10) o, f
31-40 B(11) Kq 3
41-50 B(12) by ?

CARD NO. 14 (1311)

R - . el

NCON(J), J = 1,12,NEWST %
CCON(J) = NCON(J) J = 1,12

corresponds to card numbers 12 and 13

NEWST = 0 program will restart with
NCON(11) and NCON(12) equal to 1 J
NEWST = 1 no restarts allowed

CARD NO. 15 (30I1)

NNCON(J) J = 1,30 for ROLL-HEEVE




e

RULL-HEEVE INPUT

— s

CARD NO. 1 (10A3)

IBM Col

1-30 SHOTN Title

CARD NO. 2 (8F10.0)

1-10 DPT Time Step

11-20 RHO Density ‘
21-30 AS Speed of Sound ;
31-40 AMREF Reference Mach No. %
CARD NO. 3 (8F10.0) ﬁ
1-10 D1 Reference diameter, inches i
11-20 AIX Axial Moment of Inertia, lb-in2 ?
21-30 AIY Y-Transverse Moment of Inertia, lb—in2

31-40 AlIZ Z-Transverse Moment of Inertia, lb--in2

41-50 AIXY Product of Inertia

51-60 WGT Weight, 1bs.

61-70 ACG Offset CG

CARD NO. 4 (8F10.0) 3
1-10 XCGR Reference CG, percent of length

11-20 XLR

Reference length, inches

21-30 XCG CG, percent of length

31-40 XFIN No of Fins or Assymetries




e

.“4:',““:

ROLL HEEVE INPUT (continued)

C/RD NO. 5 (8F10.0)

1-10 TCON (1) GRB y degrees
)
11-20 TCON(2) Ay deg/sec
21-30 TCON(3) WRB , degrees
0
31-40 TCON(4) LI deg/sec
41-50 TCON(5) C —
ma
51-60 TCON(6) C —
mq
61-70 TCON(7) (Gl
. npa
71-80 TCON(8) Not used

CARD NO. 6(1) to 6 ) (8F10.0) Experimental Data

(NT
1-10 TIME(K) Time, sec
11-20 DIST(1,K) X Distance, ft
21-30 DIST(2,K) Y Distance, ft
31-40 DIST(3,K) Z Distance, ft
41-50 PHIX(K) #, radians
51-60 THETFP (K) gFP' degrees
61-70 PSIFP(K) WFP’ degrees
CARD NO. 6&NT+1X
1-10 200. Stop Card
CARD NO. 7(K) to 7(NNN) (8r10.0) From ROLL-NUT
1-10 XTIME(K) Time, seconds
11-20 XQ(K) i, deg/ft
:
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ROLL HEEVE INPUT (continued)

CARD NO. 7 yy to 7 o) (8¥10.0)
21-30 XR(K)
31-40 TRE
41-50 PRB
51-60 XPHL(K)
CARD NO. 7 (ynn+1)

1-10 200.
CARD NO. 8 (8F10.0)

1-10 ACON(1)
11-20 ACON(2)
21-30 ACON(3)
31-40 ACON(4)
41-50 ACON(5)
51-60 ACON(6)
61-70 ACON(7).
71-80 ACON(8)
CARD NO. 9 (8F10.0)

1-10 ACON(9)
11-20 ACON(10)
21-30 ACON(11)
31-40 . ACON(12)
41-50 ACON(13)
51-60 ACON(14)
61-70 ACON(15)
71-80 ACON(16)

(continued)

R, deg/ft

) degrees

RB’
Yrp? degrees

mc, radians

Stop Card

x , feet
o
Xo, ft/sec
y , feet
Y , ft/sec

z , feet

7z , ft/sec

i ‘

e
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ROLL HEEVE INPUT (concluded)

CARD NO. 10 (8F10.0)

1-10 ACON(17)
11-20 ACON(18)
21-30 ACON(19)
31-40 ACON(20)
41-50 ACON(21)
51-60 ACON(22)
61-70 ACON(23)
71-80 ACON(24)

CARD NO. 11 (8F10.0)

1-10 ACON (25)

11-20 ACON(26)

21-30 ACON(27)

31-40 ACON(28)

41-50 ACON(29)

51-60 ACON(30)

CARD NO. 12 (3011)

1-30 NNCON(1) - NNCON(30)

81

Not Used

p , rad/sec
o]

ﬂo, radians

&5

Cl¢

I -1
SPNFORM (on —13~——i )

X

Not Used

i




ROLL-ANGLE INPUT

1 CARD NO. 1 (10A3) i
E 1-30 SHOTN Title i
% CARD NO. 2 (1013) I“
| 1-3 LN Starting Pt. of fit . t
4-6 NA End Pt. of Sectional fit ‘ i;
i: 7-9 ND Incremental section interval ) {?
] 10-12 NB Summing section interval Ff

CARD NO. 3 (8F10.0)

1-10 DPT Time step ii
11-20 RHO Deasity %f
21-30 AS Speed of sound i
31-40 AMREF Reference Mach No, ;l
CARD NO. 4 (8F10.0)

1-10 D1 Reference diameter, inches {
11-20 AIX Axial Moment of Inertia |
21-30 AIY Y-Transverse Moment of Inertia

31-40 AlZ Z-Transverse Moment of lnertia :
41-50 AIXY Product of Inertia

51-60 WGT Weight, lbs, i
61-70 ACG Offset CG

CARD NO. 5 (8F10.0)

1-10 XCGR Reference CG, percent of length
11-20 XLR Reference length, inches

’t 21-30 XCG CG, percent of length

l 31-40 XFIN

No of Fins or Assymetries




ROLL ANGLE INpUT (continued)

CARD NO. 6 (8F10.0)

1-10 TCON(1)
11-20 TCON(2)
21-30 TCON(3)
31-40 TCON(4)
41-50 TCON(5)
51-60 TCON(6)
61-70 TCON(7)
71-80 TCON(8)
CARD NO. 7(1) to 7(NT) (8F10.0)
1-10 TIME(K)
11-20 DIST(1,K)
21-30 DIST(2,K)
31-40 DIST(3,K)
41-50 PHIX (K)
51-60 THETFP (K)
61-70 PSIFP(K)
CARD NO. 7(NT+1)

1-10 200.

CARD NO. 8 (8F10.0)

1-10 HCON(G)
11-20 HCON(2)
21-30 HCON (3)
31-40 HCON(4)

83

ORB , degrees
(8]
90 deg/sec

Y degrees

RB ?
[o]
LI deg/sec

Cc —
ma

C_
mq

npa

Not used

Time, sec

X Distance, ft
Y Distance, ft
Z Distance, ft
#, radians

0 degrees

Fp’

WFP’ degrees

Stop Card

X , feet
X , feet/sec
Y , feet

Y , feet/sec




ROLL ANGLE INpyT (continued)

CARD NO. 8 (contd.) (8F10.0)

41-50 HCON(5)
51-60 HCON(6)
61-70 HCON(7)
71-80 HCON(8)

CARD NO. 9 (8F10.0)

1-10 HCON(9)

11-20 HCON(10)
21-30 HCON(11)
31-40 HCON(12)
41-50 HCON(13)
51-60 HCON(14)
61-70 HCON(15)
71-80 HCON(16)

CARD NO. 10 (8F10.0)

1-10 HCON(17)
11-20 HCON(18)
‘21-30 HCON(19)
31-40 HCON(20)
41-50 HCON(21)
51-60 HCON(22)
61-70 HCON(23)
71-80 HCON(24)

84

v , feet
)
io, feet/sec

CX
o

CXa2

Not Used

p_, rad/sec
0




ROLL ANGLE INPUT (continued)

CARD NO. 11 (8F10.0)

1-10 HCON (25) P, radians 3
2 ON(2 )
11-20 HCON (26) clp ,
' 21-30 HCON(27) B L
31-40 HCON(28) C 4
19 T
41-50 HCON(29) SPNFORM  (on —13———45) i
X |
51-60 HCON(30) Not used i
CARD NO. 12 (3011) !
1-30 NHCON(1) - NHCON(30) %
b
CARD NO. 13(1) to 13(NT) (8F10.0) :
1-10 TIME(K) Time, sec }
11-20 VEL(K) Total Velocity, ft/sec i
21-30 AQBAR (K} Dynamic Pressure
31-40 TRB(K) Opps degrees ;
41-50 PRB(K) ¥Ypy degrees |
CARD NO. 13(NT+1)
1-10 200, Stop Card -
CARD NO. 14 (8F10.0) )
1-10 ACON(1) GRBO’ degrees 1
11-20 ACON(2) Ay deg/sec
21-30 ACON(3) VRB » degrees
(o]
31-40 ACON(4) r s deg/sec

b,
&
i
b
[ .




ROLL ANGLE INPUT (continued)

CARD NO. 14 (cont.) (8F10.0)

41-50 ACON(5) C
mo
51-60 ACON(6) C
mo
61-70 ACON(7) C
ma g
71-89 ACON(8)
no
CARD NO. 15 (8F10.0)
1-10 ACON(9) C
nB
11-20 ACON(10) C
nB3
21-30 ACON(11) qu
31-40 ACON(12) quz
41-50 ACON(13) C
nr
51-60 ACON(14) C
nr2
61-70 ACON(15) c
npa
71-80 ACON(16) C
mpR
. CARD NO. 16 (8F10.0)
s
[ 1-10 ACON(17) Cnﬂ(;
11-20 ACON(18) ALXY
21-30 ACON(19) AIX
31-40 ACON(20) c -
mfa
41-50 ACON(21) C
m(lz
51-60 ACON(22) C
na,
61-70 ACON(23) C
mo)
71-80 ACON(24) C

‘nof
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,W
e o

|
; ROLL ANGLE 1npyr (concluded)
CARD NO. 17 (8F10.0)
1-10 ACON(25) Yot used
' 11-20 ACON(26) c ~ f
ma 8
; ' 1
i 21-30 ACON(27) C — ;
ma b
] 3 3
i 31-40 ACON(28) cC —
i " v
41-50 ACON (29" c — ¢
mq.,
51-60 ACON(30) c -
npa
1 61-706 ACON(31) Not used
71-80 ACON(32) Not used

CARD NO. 18 (8F10.0)

1-10 ACON(33) Not used

11-20 ACON(34) Not used i
21-30 ACON(35) Not used

31-40 ACON(36) #,, radians :
41-50 ACON(37) Py rad/sec

51-60 ACON(38) clp :
61-70 ACON(39) C16

71-80 ACON(40) Clg 3

CARD NO. 19 (30I1)

1-40 NNCON(1) - WNCON(40)
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CARD NO. 1 (Il)

CARD NO. 2a (10A3)

1-30 SHOTN

CARD NO. 3a (8F10.0)

1-10 DPT
11-20 RHO
21-30 AS
31-40 ~ AMREF

CARD NO. 4a (8F10.0)

1-10 D1

11-20 AIX
21-30 ALY
31-40 AIZ
41-50 ALXY
51-60 WGT
61-70 ACG

CARD NO., 5a (8F10.0)

1-10 XCGR
11-20 XLR
21-30 XCG
31-40 XFIN

MANGLE INPUT

88

No. of Rounds

Title

Time step
Density
Speed of sound

Reference Mach No.

Reference diameter, inches
Axial Moment of Inertia
Y-Transverse Moment of Inertia
Z-Transverse Moment of Inertia
Product of Inertia

Weight, 1lbs

Offset CG

Reference CG, percent of length
Reference lenpth, inches
CG, percent of length

No. of Fins or Assymetries




MANGLE INPUT (continued)

CARD NO. 6a (8F10.0)

1-10 TCON(1)
11-20 TCON(2)
21-30 TCON(3)
31-40 TCON(4)
41-50 TCON(5)
51-60 TCON(6)
61-70 TCON(7)
71-80 TCON(8)

CARD NO, 7a(l) to 7a(kT) (8F10.0)
1-10 TIME(K)

11-20 DIST(1,K)
21-30 DIST(2,K)
31-40 DIST(3,K)
41-50 PHIX(K)

51-60 THETFP (K)
61-70 PSIFP(K)

CARD NO. 7a .01

1-10 200.

CARD NO. 8a (8¥10.0)

1-10 HCON(1)
11-20 HICON(2)
21-30 HCON(3)
31-40 HCON(4)

89

e degrees

RB)
)
qy deg/sec
WRB » degrees
(o)
T deg/sec
C._.
mo
C__
mq
npa

Not used

Time, sec

X Distance, ft
Y Distance, ft
Z Distance, ft
¢, radians

0 degrees

FP’

Yep» degrees

Stop Card

X , feet
ﬁo, feet/sec
Y , feet

Y , feet/sec
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MANGLE INPyT (continued)

CARD NO. 8a (contd.) (8F10.0)

41-50 HCON(5) Zo' fect
51-60 HCON(6) io, feet/sec
61-70 HCON(7) Cx
o
71-80 HCON(8) CXG
2
CARD NO.9a (8F10.0)
- C
1-10 HCON(9) CXBZ
11-20 HCON(10) CX
. m
21-30 HCON(11) _ CY
o]
31-40 HCON(12) CYS
41-50 HCON(13) CYB3
51-60 HCON(14) CN
0
61-70 HCON(15) CNO.
71-80 HCON(16) CNa
3
CARD NO. 10a (8F10.0)
1-10 HCON(17) )
Ypa
11-20 iCON(18
} (18) Ypg
21-30 HCON(19) C.—
Xa
2
31-40 HCON(20) C —
Na
41-50 HCON(21) C,—
N03
51-60 HCON(22) , -
Ypa
61-70 HCON(23) Not Usced
71-80 HCON(24) Pys rad/sec
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MANGLE INPUT (continued)

CARD NO.1la (8F10.0)

1-10 HCON(25)
11-20 HCON(26)
21-30 HCON(27)
31-40 HCON(28)
41-50 HCON(29)
51-60 HCON(30)

CARD NO.12a (3011)

1-30 NHCON (1) — NHCON(30)
CARD NO.lBa(l) to 13a .y (8¥10.0)
1-10 TIME(K)

11-20 VEL(K)

21-30 AQBAR (K)
31-40 TRB(K)

41-50 PRB (K)

v . 3L
CARD NO.1 j(NT+l)

1-10 200.

CARD NO. l4a (8F10.0)

1-10 ACON(L)
11-20 ACON{)
21-30 ACUN(3)
31-40 ACON(4)

@ , radians
(o]
C

1p

Clé

C
10 L _m
SPNFORM (on-JLf—~—i)
X
Not used

Time, sec
Total Velocity, ft/sec
Dynamic Pressure

ORB’ degrees

Y degrees

RB’
Stop Card

OR“O, degrees

1

‘ leg/s
o deg/sec

¥ degrees

RB
0

ec
ro deg/s

T ——
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CARD NO. 143 (cont.) (8F10.0)

MANGLE 1InpuT (continued)

41-50 ACON(5)
51-60 ACON(6)
61-70 ACON(7)
71-80 ACON(8)

CARD NO. 15a(8F10.0)

1-10 ACON(9)
11-20 ACON(10)
21-30 ACON(11)
31-40 ACON(12)
41-50 ACON(13)
51-60 ACON(14)
61-70 ACON(15)
71-80 ACON(16)

CARD NO. 16a (8F10.0)

1-10 ACON(1/)
11-20 ACON(18)
21-30 ACON(19)
31-40 ACON(20)
41-50 ACON(21)
51-60 ACON(22)
61-70 ACON(23)
71-80 ACON(24)

mo
ma
ma

no

nf

ni

i

nr

nr
npa

Cnps

Cnﬂg
ALXY

AIX
Cmﬂg
ma
na

moi)

rof)

[
ir
i
K1
¥
b1
i

gt e g




MANGLE INPUT (concluded)

CARD NO. 1l7a (8F10.0)

1-10

11-20
21-30
31-40
41-50
51-60
61-70

71-80

ACON(25)
ACON(26)
ACON(27)
ACON(28)
ACON(29)
ACON(30)
ACON(31)

ACON(32)

CARD NO. 18a (8F10.0)

1-10

11-20
21-30
31-40
41-50
51-60
61-70

71-80

CARD NO. 19a (4011)

1-40

ACON(33)
ACON(34)
ACON(35)
ACON(36)
ACON(37)
ACON(38)
ACON(39)

ACON(40)

Not used

C o
Cﬁa
3
mq
C —
mq.,
nﬁa
Not used

Not used

Not used
Not used
Not used
® , radians

p_, rad/sec

1p
18

19

NNCON(LM,1) - NNCON(LM, 40)
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o] cards 2 through 19 must be read 'LMN' times, stacked behind each other

(i.e. 2a-19a, 2b-19b,

o cards 8-12 are read to get the HCONS to be used by MANGLE.

S

o Ccards 14-19 are next to supply the common coefficlents for the multiple 13

§it and also the unique coefficients (ACON's 1, 2, 3, 4, 5, 8, 18, 19, 36,

37) of the first data set. t

o} cards 20-22 (Below) are repeated for the remaining data sets to supply the 2

unique coefficients for

CARD NO. 20 (8F10.0)

1-10 ACON(1)
11-20 ACON(2)
21-30 ACON(3)
31-40 ACON(4)
41-50 ACON(5)
51-60 ACON(8)
61-70 ACON(18)
71-80 ACON(19)

CARD NO. 21 (8F10.0)

1-10 ACON(36)

ACON(37)

those rounds. i

QRBO’ degrees

G, deg/sec

]

Yop ? degrees
)

T deg/sec

mo

no

ATXY

AlIX

——

00, radians

Py rad/sec
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J CARD NO. 22 (l0I1)
% 1-10 NNCON(LM,1) ~ NNCON(LM,40) ;
1
: .
?‘ ‘r :
t
H
i
v
?‘.

SRRV S6 4

e e

-
r 3
»
L3
i
3
i
1
b1
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TWO ROUNDS

Card 1 (LMN = 2)

Cards

Cards

Cards

Cards

Cards

2a-19a

2b-19b

8-12

14-19

20-22

THREE ROUNDS

Ccard 1 (LMN = 3)

Cards

Cards

Cards

Cards

Cards

Cards

Cards

2a-19a

2b-19b

2c-19c

8-12

14-19
20-22

20-22

EXAMPLE DATA DECK SETUP

Written by ROLL-HEAVE

HCONS for MANGLE

ACONS for MANGLE

Written by ROLL-HEAVE

HCONS for MANGLE

ACONS for MANGLE
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t MUL-HEEV INPUT

IBM Col. i
CARD NO. 1 (I1) ;-';
| 1 LMN Number of Rounds i
: ;
CARD NO. 2a :
. 1-30 SHOTN Title
CARD NO. 3a (8F10.0) E
.f 1-10 DPT Time Step
11-20 RHO Density K
21-30 AS Speed of Sound
31-40 AMREF Reference Mach No,
CARD NO. 4a (8F10.0) %
1-10 D1 Reference diameter, inches E
11-20 AIX Axial Moment of Inertia, lb-in2 \
21-30 1 ALY Y-Transverse Moment of Inertia, lb-in2 ;
31-40 AlZ Z-Transverse Moment of Inertia, lb-in2
41-50 AIXY Product of Inertia
51-60 WGT Weight, lbs
61-70 ACG Offset, CG
hi
1 CARD NO. 5a (8F10.0) '
1-10 XCGR Reference CG, percent of length
11-20 XLR Reference length, inches
_ 21-30 XCaG CG, percent of length
|
| 31-40 XFIN No. of Fins or Assymetries
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MUL-HEEV _INPUT (continued) E
3
CARD NO. 6a (8K10.0) i
1-10 TCON(1) QRB » degrees 5
0
11-20 TCON(2) A4y deg/sec
21-30 TCON(D) WRB » degrees
o]
31-40 TCON (4) ros deg/sec ¥
5 41-50 TCON(5) G {
ma
' 51-60 TCON(6) c — t
mq ;
i 61-70 TCON(7) C - _
. npa ¢
71-80 TCON(8) Not used ;
s
i
E 7¢ b . D i : ate s
CARD NO.71(1) to kNT) (81'10.0) Experimental Data ‘
1-10 TIHE (K) Time, sec .
11-20 DIST(1,K) X Distance, ft
21-30 DIST(2,K) Y Distance, ft ;
3
31-40 DIST(3,K) Z Distance, ft -
i
41-50 PHIX(X) §, radians ;
51-60 TUETFP (K) QFP’ degrees
61-70 PSIFP(K) ipps degrees
CARD NoO. 73(NT+1)
1-10 200, Stop Card
CARD NO, 8110\,) to 8‘1(1‘4.'\4'_11_)_‘(?_12__()"0‘)‘ From ROLL-NUT
1-10 XTIME(K) Time, sec
11-20 XQ(K) Q, deg/ft
g
g | I s
£ ) 98 %
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MUL-HEEV INI'UT (continued)

CARD NO., 8a ) to siNNN) (8F10.0)
21-30 XR (K)
31-40 TRB
41-50 PRB
51-60 XPHL(K)
CARD NO.Ba(NNN+l)

1-10 200.
CARD NO. 9a (8F10.0)

1-10 ACON(1)
11-20 ACON(2)
21-30 ACON(3)
31-40 ACON (4)
41-50 ACON(5)
51-60 ACON(6)
61-70 ACON(7)
71-80 ACON(8)
CARD 1O, 10a (8§10.0)

1-10 ACON(9)
11-20 ACON (10)
21-30 ACON(11)
31-40 ACON(12)
41-50 ACON(13)
51-60 ACON(14)
61~70 ACON(15)
71-80 ACON(16)
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(continued)

R, deg/ft
ORB' degrees
WRB’ degrees

ﬂC’ radians

Stop Card
X ’ feet
o
Xo, ft/sec
Y , feet
o
Y , ft/sec
o}
Z , feet
o
Z, f
Lo’ t/sec
CX
o]
C
sz
C
X8
\12
LX
m
LY
O
G
YR
C
R
\(3
LN
QO
C
Na
C




ke
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MUL-HEEV INPUT (continued)

CARD NO. lla (8F10.0)

1-10

11-20
21-30
31-40
41-50
51-60
61-70

71-80

ACON(17)
ACON(18)
ACON(19)
ACON(20)
ACON(21)
ACON(22)
ACON(23)

ACON(24)

CARD NO. 12a (8F10.0)

1-10

11-20
21-30
31-40
41-50

51-60

CARD NO. 13a (30I1)

1-30

(iu e" 28‘13&, 2b-13b, .o t)n

ACON(25)
ACON(26)
ACON(27)
ACON(28)
ACON(29)

ACON(30)

Not Used

P , rad/sec
0

f§ , radians
o

c

1p
15
c
10 I -1
SPNFORM (on _Y__I._?;)
X
Not used

NNCON(LM, 1) - NNCON(LM, 30)

Cards 2 through 13 must be read 'LMN' times stacked behind cach other

o Cards 9 through 13 are then read once again contairing the initial ectimates

for the common aerodynamics and for the unique coefficients (ACON(1), (2),

(3), (4), (5), (6), (11), (14), (24), (25), (29)) pertaining to the first

data set.




o Cards l4a, 15a, l6a are read for the unique coefficients and NNCON's for

the remaining data sets.

CARD NO. l4a (8F10.0)

b 1-10 ACON(1) xo’ feet
11-20 ACON(2) ko’ ft/sec
21-30 ACON(3) Yo’ feet
31-40 ACON(4) fzo, ft/sec
41-50 ACON(5) 2, feet
51-60 ACON(6) Z,, ft/sec
61-70 ACON(11) Cy
71-80 ACON(14) CNO

o

CARD NO. 15a (8F10.0)

1-10 ACON(24) Po’ rad/sec
11-20 ACON(25) ﬁo, radians

=L
21-30 ACON(29) SPNFORM (on —Y—I———i)

X

CARD NO. 1l6a (1111)

1-11 NNCON(LM, 1) - NNCON(LM, 30)

e
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MUL-HEEV INPUT (Concluded)

EXAMPLE OF DATA DECK SETUPS

TWO ROUNDS

Card No. 1 LMN = 2 g

Card No. 2a-13a
Written by ROLANGLE
Card No. 2b-13b

Card No. 9a-13a
Coefficient for MUL-HELEV
Card No. l4a-1l6a

THREE ROUNDS

I R R S e

Card No. 1 LMN = 3

=g

Card No. 2a-13a
Card No. 2b-13b Written by ROLANGLE

Card No. 2c-13c

Card No. 9a-13a
Card No. l4a-1lé6a

Card No. l4b-16b
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URRB: VRB* YRB

p.q. T

LIST OF SYMBOLS

unit vectors aligned with the carth coordinate system

unit vectors aligned with the fixed plane coordinate system
unit vectors aligned with the body fixed coordinate system
derivative with respect to time in body fixed coordinates
mass of the missile

total velocity vector relative to earth

total angular velocity relative to carth

total angular momentum of the missile

body fixed velocity components relative to carth

body fixed angular velocity components relative to earth
mass moment of inertia about the x-axis

mass moment of inertia about the y-axis

mass moment of inertia about the z-axis

cross product of mass moment of inertia

indicates the derivative of u with respect to time

body lixed total force vector

body fixed total moment vector

R, o 3

S

T R ek

T AR A




\ Fy, Fy, R —  body fixed force components e
‘ Lp, Lq, L, —  Dbody fixed moment components !
- rh;
OFps VFP — fixed plane Euler angles ‘
i}
¢ — roll angle about the body axis
U Ve Ym — missile fixed velocity components relative to the trajectory '
i q —  dynamic pressure
A — reference area of the body ]
d — reference diameter of the body
¢ — aerodynamic roll angle £
t —  time ¢
i
P — air density
OrB> VRB —  body fixed Euler angles
Vx, Vy, VZ —  Earth fixed velocity components '

104

!
\
' {




Ao

INITIAL DISTRIBUTION

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1

Hq USAF/RDQRM
Hq USAF/SAMI
Hg USAF/XOXFCM
SC/ IGFG
AFSC/SDZA
Hq AFSC/DLCAW
AFML/DO/AMIC
Hq 4950 TW/TZHM
AFIT/LD
ASD/ENYS
ASD/ENAZ
AFFDL/FES
TAC/DRA
SAC/LGWC
Hq SAC/NRI, STINFO Lib
WRAMA/MMEBL
CRE/ADD/Publications
AFWL/IR
AUL (ALU/LSE-70-239)
SAPRI-LW-A
AMXSY -DD
AMXSY-A
DRXBR-TE
Lib, K2400
SARPA-TS-TS
Dahlgren Laboratory
White Oak Laboratory
NAV ORD STN/Tech Lib
NAV WEAPONS STN/20323
NAV Underwater Systems Ctr/Code 54
USN WEA CNTR/Code 233
Naval Weapons Center/Code 31
Air Force Wpns Lab/Tech Lib
NAV AIR SYS COMD/Code AIR-532Z
Office Naval Research/Code 473
NASA STINFO FAC
Lawrence Rad Lab/Dept L-3
The John Hopkins Univ/
Applied Physics Lab
Battelle Memorial Inst/Reports Lib
Inst for Defense Analysis/
Classified Lib
Sandia Laboratories
The RAND Corp/Lib-D
DDC/TC
USAFTFWC/TA
SARWV-RDT-L

—

2
1
2
1
1
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Naval Weapons Center/Code 3123

Ogden ALC/MVWM

AF Spec Comm Cntr/SUR

DAMA-WSA

SARPA-FR-S-A

US Atomic Energy Comm/Hq Lib

AEDC/ARO, Inc/DLCS

AMXSY/DS

AMCRD/WM

Nav Wpns Eval Fac/Code WT

Office of the Chief of Nav Opns/

(OP-982E)

Naval Research Lab/Code 2627

Hq PACAF/LGWSE

USAFTAWC/TE

TAWC/TRADOCLO

AFATL/DL

AFATL/DLY

AFATL/DLOU

AFATL/DLOSL

AFATL/DLYV

AFATL/DLDL

AFATL/DLDA

AFATL/DLDE

AFATL/DLDT

AFATL/DLDG

AFIS/INTA

Naval Sea Systems Comd/Code SEA-
0332)

Naval Sea Systems Comd/Code SEA-
992E)

Nav Ord Lab/White Oak

Naval Wpns Center/Code 32602

Naval Wpns Center/Code 3163

Ogden ALC/MMWRA

AFLC/MMWMC

ASD/ENESS

AFATL/DLJ

AFATL/DLA

ADTC/SDC

Redstone Sci Info Cntr/Doc Sec

General Electric Co/Armament Dept 1
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